extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1C22≀C2 = C42⋊9D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 16 | | C4.1C2^2wrC2 | 128,734 |
C4.2C22≀C2 = C42.129D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.2C2^2wrC2 | 128,735 |
C4.3C22≀C2 = C42⋊10D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.3C2^2wrC2 | 128,736 |
C4.4C22≀C2 = C42.130D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.4C2^2wrC2 | 128,737 |
C4.5C22≀C2 = M4(2)⋊5D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 16 | 8+ | C4.5C2^2wrC2 | 128,740 |
C4.6C22≀C2 = M4(2).D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | 8- | C4.6C2^2wrC2 | 128,741 |
C4.7C22≀C2 = (C2×C4)⋊2D8 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.7C2^2wrC2 | 128,743 |
C4.8C22≀C2 = (C22×D8).C2 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.8C2^2wrC2 | 128,744 |
C4.9C22≀C2 = (C2×C4)⋊3SD16 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.9C2^2wrC2 | 128,745 |
C4.10C22≀C2 = (C2×C8)⋊20D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.10C2^2wrC2 | 128,746 |
C4.11C22≀C2 = (C2×C8).41D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.11C2^2wrC2 | 128,747 |
C4.12C22≀C2 = (C2×C4)⋊2Q16 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.12C2^2wrC2 | 128,748 |
C4.13C22≀C2 = M4(2).4D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.13C2^2wrC2 | 128,750 |
C4.14C22≀C2 = M4(2).5D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.14C2^2wrC2 | 128,751 |
C4.15C22≀C2 = M4(2).6D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.15C2^2wrC2 | 128,752 |
C4.16C22≀C2 = D8⋊7D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.16C2^2wrC2 | 128,916 |
C4.17C22≀C2 = Q16⋊7D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.17C2^2wrC2 | 128,917 |
C4.18C22≀C2 = D8⋊8D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.18C2^2wrC2 | 128,918 |
C4.19C22≀C2 = D8.9D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.19C2^2wrC2 | 128,919 |
C4.20C22≀C2 = Q16.8D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.20C2^2wrC2 | 128,920 |
C4.21C22≀C2 = D8.10D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.21C2^2wrC2 | 128,921 |
C4.22C22≀C2 = D8⋊D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 16 | 8+ | C4.22C2^2wrC2 | 128,922 |
C4.23C22≀C2 = D8.D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | 8- | C4.23C2^2wrC2 | 128,923 |
C4.24C22≀C2 = Q16.10D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | 4+ | C4.24C2^2wrC2 | 128,924 |
C4.25C22≀C2 = Q16.D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | 4 | C4.25C2^2wrC2 | 128,925 |
C4.26C22≀C2 = D8.3D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | 4 | C4.26C2^2wrC2 | 128,926 |
C4.27C22≀C2 = D8.12D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | 4- | C4.27C2^2wrC2 | 128,927 |
C4.28C22≀C2 = C24.263C23 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.28C2^2wrC2 | 128,1163 |
C4.29C22≀C2 = C24.264C23 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.29C2^2wrC2 | 128,1164 |
C4.30C22≀C2 = C23.334C24 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.30C2^2wrC2 | 128,1166 |
C4.31C22≀C2 = C23.335C24 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.31C2^2wrC2 | 128,1167 |
C4.32C22≀C2 = C24.565C23 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.32C2^2wrC2 | 128,1168 |
C4.33C22≀C2 = C2×C22⋊D8 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.33C2^2wrC2 | 128,1728 |
C4.34C22≀C2 = C2×C22⋊SD16 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.34C2^2wrC2 | 128,1729 |
C4.35C22≀C2 = C2×Q8⋊D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.35C2^2wrC2 | 128,1730 |
C4.36C22≀C2 = C2×C22⋊Q16 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.36C2^2wrC2 | 128,1731 |
C4.37C22≀C2 = C2×D4⋊D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.37C2^2wrC2 | 128,1732 |
C4.38C22≀C2 = C2×D4.7D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.38C2^2wrC2 | 128,1733 |
C4.39C22≀C2 = C4○D4⋊D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.39C2^2wrC2 | 128,1740 |
C4.40C22≀C2 = D4.(C2×D4) | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.40C2^2wrC2 | 128,1741 |
C4.41C22≀C2 = (C2×Q8)⋊16D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.41C2^2wrC2 | 128,1742 |
C4.42C22≀C2 = Q8.(C2×D4) | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.42C2^2wrC2 | 128,1743 |
C4.43C22≀C2 = C2×D4⋊4D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 16 | | C4.43C2^2wrC2 | 128,1746 |
C4.44C22≀C2 = C2×D4.9D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.44C2^2wrC2 | 128,1747 |
C4.45C22≀C2 = C2×D4.8D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.45C2^2wrC2 | 128,1748 |
C4.46C22≀C2 = C2×D4.10D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | | C4.46C2^2wrC2 | 128,1749 |
C4.47C22≀C2 = C23.9C24 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 16 | 8+ | C4.47C2^2wrC2 | 128,1759 |
C4.48C22≀C2 = C23.10C24 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | 8- | C4.48C2^2wrC2 | 128,1760 |
C4.49C22≀C2 = C25.C4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 16 | | C4.49C2^2wrC2 | 128,515 |
C4.50C22≀C2 = C4.C22≀C2 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.50C2^2wrC2 | 128,516 |
C4.51C22≀C2 = (C23×C4).C4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.51C2^2wrC2 | 128,517 |
C4.52C22≀C2 = C23.35D8 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.52C2^2wrC2 | 128,518 |
C4.53C22≀C2 = C24.155D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.53C2^2wrC2 | 128,519 |
C4.54C22≀C2 = C24.65D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.54C2^2wrC2 | 128,520 |
C4.55C22≀C2 = 2+ 1+4.2C4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 32 | 4 | C4.55C2^2wrC2 | 128,523 |
C4.56C22≀C2 = 2+ 1+4⋊3C4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.56C2^2wrC2 | 128,524 |
C4.57C22≀C2 = 2- 1+4⋊2C4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.57C2^2wrC2 | 128,525 |
C4.58C22≀C2 = C4○D4.D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 16 | 8+ | C4.58C2^2wrC2 | 128,527 |
C4.59C22≀C2 = (C22×Q8)⋊C4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 32 | 8- | C4.59C2^2wrC2 | 128,528 |
C4.60C22≀C2 = C23⋊2D8 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.60C2^2wrC2 | 128,731 |
C4.61C22≀C2 = C23⋊3SD16 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.61C2^2wrC2 | 128,732 |
C4.62C22≀C2 = C23⋊2Q16 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.62C2^2wrC2 | 128,733 |
C4.63C22≀C2 = M4(2)⋊D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.63C2^2wrC2 | 128,738 |
C4.64C22≀C2 = M4(2)⋊4D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.64C2^2wrC2 | 128,739 |
C4.65C22≀C2 = C42⋊2D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 16 | 4 | C4.65C2^2wrC2 | 128,742 |
C4.66C22≀C2 = (C2×C8).2D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 32 | 4 | C4.66C2^2wrC2 | 128,749 |
C4.67C22≀C2 = C4⋊C4.96D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.67C2^2wrC2 | 128,777 |
C4.68C22≀C2 = C4⋊C4.97D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.68C2^2wrC2 | 128,778 |
C4.69C22≀C2 = C4⋊C4.98D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.69C2^2wrC2 | 128,779 |
C4.70C22≀C2 = M4(2).8D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 16 | 8+ | C4.70C2^2wrC2 | 128,780 |
C4.71C22≀C2 = M4(2).9D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 32 | 8- | C4.71C2^2wrC2 | 128,781 |
C4.72C22≀C2 = C42.131D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 16 | 4 | C4.72C2^2wrC2 | 128,782 |
C4.73C22≀C2 = M4(2).10D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.73C2^2wrC2 | 128,783 |
C4.74C22≀C2 = M4(2).11D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.74C2^2wrC2 | 128,784 |
C4.75C22≀C2 = C22⋊C4.7D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 32 | 4 | C4.75C2^2wrC2 | 128,785 |
C4.76C22≀C2 = (C2×C4)⋊3D8 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.76C2^2wrC2 | 128,786 |
C4.77C22≀C2 = (C2×C4)⋊5SD16 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.77C2^2wrC2 | 128,787 |
C4.78C22≀C2 = (C2×C4)⋊3Q16 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 128 | | C4.78C2^2wrC2 | 128,788 |
C4.79C22≀C2 = C24.244C23 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.79C2^2wrC2 | 128,1139 |
C4.80C22≀C2 = C23.309C24 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.80C2^2wrC2 | 128,1141 |
C4.81C22≀C2 = C24.177D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 16 | | C4.81C2^2wrC2 | 128,1735 |
C4.82C22≀C2 = C24.178D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.82C2^2wrC2 | 128,1736 |
C4.83C22≀C2 = C24.104D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.83C2^2wrC2 | 128,1737 |
C4.84C22≀C2 = (C2×D4)⋊21D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 32 | | C4.84C2^2wrC2 | 128,1744 |
C4.85C22≀C2 = (C2×Q8)⋊17D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 64 | | C4.85C2^2wrC2 | 128,1745 |
C4.86C22≀C2 = M4(2)⋊C23 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 16 | 8+ | C4.86C2^2wrC2 | 128,1751 |
C4.87C22≀C2 = M4(2).C23 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 32 | 8- | C4.87C2^2wrC2 | 128,1752 |
C4.88C22≀C2 = C23.7C24 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C4 | 16 | 4 | C4.88C2^2wrC2 | 128,1757 |
C4.89C22≀C2 = C24.135D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 64 | | C4.89C2^2wrC2 | 128,624 |
C4.90C22≀C2 = C23.23D8 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 64 | | C4.90C2^2wrC2 | 128,625 |
C4.91C22≀C2 = C24.75D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 64 | | C4.91C2^2wrC2 | 128,626 |
C4.92C22≀C2 = C24.76D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 64 | | C4.92C2^2wrC2 | 128,627 |
C4.93C22≀C2 = M4(2)⋊20D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 32 | | C4.93C2^2wrC2 | 128,632 |
C4.94C22≀C2 = M4(2).45D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 32 | | C4.94C2^2wrC2 | 128,633 |
C4.95C22≀C2 = M4(2).46D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 32 | 8- | C4.95C2^2wrC2 | 128,634 |
C4.96C22≀C2 = M4(2).47D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 16 | 8+ | C4.96C2^2wrC2 | 128,635 |
C4.97C22≀C2 = M4(2).48D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 32 | | C4.97C2^2wrC2 | 128,639 |
C4.98C22≀C2 = M4(2).49D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 64 | | C4.98C2^2wrC2 | 128,640 |
C4.99C22≀C2 = C4.(C4×D4) | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 32 | 8- | C4.99C2^2wrC2 | 128,641 |
C4.100C22≀C2 = (C2×C8)⋊4D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 16 | 8+ | C4.100C2^2wrC2 | 128,642 |
C4.101C22≀C2 = M4(2)⋊21D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 16 | 8+ | C4.101C2^2wrC2 | 128,646 |
C4.102C22≀C2 = M4(2).50D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 32 | 8- | C4.102C2^2wrC2 | 128,647 |
C4.103C22≀C2 = C24.360C23 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 64 | | C4.103C2^2wrC2 | 128,1347 |
C4.104C22≀C2 = C24.361C23 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 64 | | C4.104C2^2wrC2 | 128,1348 |
C4.105C22≀C2 = C24⋊8Q8 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 32 | | C4.105C2^2wrC2 | 128,1580 |
C4.106C22≀C2 = C24.105D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 32 | | C4.106C2^2wrC2 | 128,1738 |
C4.107C22≀C2 = C24.106D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 32 | | C4.107C2^2wrC2 | 128,1739 |
C4.108C22≀C2 = C42.12C23 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 16 | 8+ | C4.108C2^2wrC2 | 128,1753 |
C4.109C22≀C2 = C42.13C23 | φ: C22≀C2/C24 → C2 ⊆ Aut C4 | 32 | 8- | C4.109C2^2wrC2 | 128,1754 |
C4.110C22≀C2 = C24⋊3C8 | central extension (φ=1) | 32 | | C4.110C2^2wrC2 | 128,511 |
C4.111C22≀C2 = C24.51(C2×C4) | central extension (φ=1) | 64 | | C4.111C2^2wrC2 | 128,512 |
C4.112C22≀C2 = C24.66D4 | central extension (φ=1) | 32 | | C4.112C2^2wrC2 | 128,521 |
C4.113C22≀C2 = 2+ 1+4⋊4C4 | central extension (φ=1) | 32 | 4 | C4.113C2^2wrC2 | 128,526 |
C4.114C22≀C2 = C23.21M4(2) | central extension (φ=1) | 64 | | C4.114C2^2wrC2 | 128,582 |
C4.115C22≀C2 = (C2×C8).195D4 | central extension (φ=1) | 64 | | C4.115C2^2wrC2 | 128,583 |
C4.116C22≀C2 = C24.10Q8 | central extension (φ=1) | 32 | | C4.116C2^2wrC2 | 128,587 |
C4.117C22≀C2 = M4(2).40D4 | central extension (φ=1) | 32 | 4 | C4.117C2^2wrC2 | 128,590 |
C4.118C22≀C2 = M4(2).41D4 | central extension (φ=1) | 16 | 4 | C4.118C2^2wrC2 | 128,593 |
C4.119C22≀C2 = M4(2).42D4 | central extension (φ=1) | 32 | | C4.119C2^2wrC2 | 128,598 |
C4.120C22≀C2 = (C2×D4).Q8 | central extension (φ=1) | 32 | 4 | C4.120C2^2wrC2 | 128,600 |
C4.121C22≀C2 = C23.22M4(2) | central extension (φ=1) | 64 | | C4.121C2^2wrC2 | 128,601 |
C4.122C22≀C2 = C23⋊2M4(2) | central extension (φ=1) | 64 | | C4.122C2^2wrC2 | 128,602 |
C4.123C22≀C2 = C24.72D4 | central extension (φ=1) | 32 | | C4.123C2^2wrC2 | 128,603 |
C4.124C22≀C2 = M4(2).43D4 | central extension (φ=1) | 32 | | C4.124C2^2wrC2 | 128,608 |
C4.125C22≀C2 = M4(2).44D4 | central extension (φ=1) | 32 | 4 | C4.125C2^2wrC2 | 128,613 |
C4.126C22≀C2 = M4(2)⋊19D4 | central extension (φ=1) | 16 | 4 | C4.126C2^2wrC2 | 128,616 |
C4.127C22≀C2 = (C2×C8)⋊D4 | central extension (φ=1) | 16 | 4 | C4.127C2^2wrC2 | 128,623 |
C4.128C22≀C2 = C23.288C24 | central extension (φ=1) | 64 | | C4.128C2^2wrC2 | 128,1120 |
C4.129C22≀C2 = C24.103D4 | central extension (φ=1) | 32 | | C4.129C2^2wrC2 | 128,1734 |
C4.130C22≀C2 = C42.313C23 | central extension (φ=1) | 16 | 4 | C4.130C2^2wrC2 | 128,1750 |